Automorphisms of nilpotent groups of class two with small rank

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amalgams of Nilpotent Groups of Class Two

In this paper we will prove analogues of B. Maier’s characterization of weak and strong embeddability of amalgams in N2 [12, 13] for the subvarieties of N2. We will also give analogues of D. Saracino’s characterization of weak and strong amalgamation bases [17], the author’s work on dominions [11] and on amalgamation bases in some varieties of nil-2 groups [8, 9]. Definitions will be recalled b...

متن کامل

Abelian Groups, Homomorphisms and Central Automorphisms of Nilpotent Groups

In this paper we find a necessary and sufficient condition for a finite nilpotent group to have an abelian central automorphism group.

متن کامل

Subgroups defining automorphisms in locally nilpotent groups

We investigate some situation in which automorphisms of a groupG are uniquely determined by their restrictions to a proper subgroup H . Much of the paper is devoted to studying under which additional hypotheses this property forces G to be nilpotent if H is. As an application we prove that certain countably infinite locally nilpotent groups have uncountably many (outer) automorphisms.

متن کامل

Automorphisms of the Category of the Free Nilpotent Groups of the Fixed Class of Nilpotency

This research was motivated by universal algebraic geometry. One of the central questions of universal algebraic geometry is: when two algebras have the same algebraic geometry? For answer of this question (see [8],[10]) we must consider the variety Θ, to which our algebras belongs, the category Θ of all finitely generated free algebras of Θ and research how the group AutΘ of all the automorphi...

متن کامل

Nilpotent Groups of Finite Morley Rank

Now assume |G : H| is infinite and that H is definable in G (but H need no longer be infinite or G-normal). Let Z = Z◦(G), and note that (a) implies that Z is infinite. If |Z : H ∩Z| is infinite, then |HZ : H| is infinite as well. In this case we are done since H ≤ HZ ≤ NG(H). Otherwise, |Z : H ∩Z| is finite, so the connectedness of Z implies that Z ≤ H. We can now proceed by induction on the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics

سال: 1985

ISSN: 0263-6115

DOI: 10.1017/s1446788700022230